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Abstract —A mixed spectral-domain analysis is used to derive dispersion

characteristics of dominant modes in a class of planar transmission lines

with a pedestal. Equivalent structures are constructed in which magnetic

surface currents are identified as the unknowns at the aperture separating

two different regions. Spectraf dyadic Green’s functions are derived for

these stroctores using the spectral-domain immittance approach. The char-

acteristic eqnations resulting from the application of the spectral Gaferkin

method involve mixing two different spectraf domains, which exist on the

two sides of the pedestal snpport. The present method aflows one to retain

the simplicity and numericaf efficiency of the conventional spectral-domain

immittance approach, which cannot be applied directly to the present

structures. Numerical data are provided for the dispersion characteristics

of dominant modes in a pedestal-snppurted stripline and finline.

I. INTRODUCTION

sUSPENDED striplines have been increasingly used as

transmission structures in various millimeter-wave

components [1]–[3]. The ease with which they can be

fabricated and their planar configuration make them suit-

able for integrating into monolithic millimeter-wave inte-

grated circuits. At the same time, compared with the

conventional microstrip line, they offer lower propagation

losses and wider strips (for a given impedance), which

make them more tolerant to the manufacturing process. It

was also believed that they are less dispersive. However, as

pointed out in [4], the dispersion is not always negligible.

Thus, a frequency-dependent solution is important for

suspended striplines.

The substrate in a suspended stripline can be supported

by either grooves or pedestals [5]. As pointed out in [3],

with comparable dielectric and channel dimensions, the

pedestal-supported suspended stripline exhibits a substan-
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tially higher moding frequency than the suspended stripline

with a groove (even higher than the conventional mi-

crostrip), giving it a much wider usable frequency range.

Also, the pedestal-supported suspended stripline has a

larger impedance range for given strip widths than does

the microstrip. Further, when compared with a groove-

supported suspended stripline of similar dimensions, the

structure with a pedestal gives an impedance which is less

sensitive to dimensional tolerances, especially for wide

strips [3]. These considerations are important for millime-

ter-wave component designs, e.g., filter designs [3].

The finline is another class of planar transmission line

widely used in millimeter-wave components [6], [7]. They

have several advantages: (1) low-loss propagation; (2) rela-

tively wide single-mode bandwidth, as the finline some-

what resembles the ridged waveguide; (3) compatibility

with beam-lead and chip devices, thus again offering the

potential for integrating into monolithic millimeter-wave

integrated circuits; and (4) longer guide wavelength when

compared to a microstrip, thus giving larger dimensional

tolerances. Again, the dielectric substrates in firdines have

to be supported by grooves or pedestals as in suspended

striplines.

The suspended stripline and finline, without any support

structure, have been analyzed with different methods, in-

cluding the spectral-domain approach [8], [9]. However,

only quasi-static analyses for the pedestal-supported

stripline are available [3], [5]. As for the finline, a fre-

quency-dependent analysis incorporating the support

structure has been performed with a hybrid-mode mode-

matching technique in the spatial domain [10]. More re-

cently, an asymmetrical finline has been analyzed with a
spectral-domain technique [11]. In this paper, frequency-

dependent analyses are presented for a class of suspended

striplines and finlines with pedestals. A generalization of

the spectral-domain immittance approach for conventional

planar transmission lines [12] is used. The new approach

takes into account the fact that the regions above and

below the pedestal support have different sidewall separa-

tions; hence, it requires the mixing of two different spec-

tral domains which exist on the two sides of the pedestal

support. The major difference between the present method
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Fig. 1. Pedestd-supported transmission lines. (a) Stripline. (b) Finline.

and the one described in [11] is that the attractive essential

features of the spectral-domain imrnittance approach are

retained in formulating the characteristic equations for the

dispersion analysis of quasi-planar transmission lines. As

pointed out later, the method itself is quite general; hence,

it is applicable to other structures, e.g., transmission lines

with finite metallization thickness and substrate holding

grooves.

II. FORMULATION

Fig. l(a) and (b) depicts the pedestal-supported stripline

and finline. The major difference between the present

structures and those discussed in [12] and [13] is that the

sidewalls in this case have different separations for y

greater than and less than zero. As a result, the spectral-

domain immittance approach described in [12] and [13]

cannot be applied directly to the present problems, as the

Fourier transform variable a in x has different values for

y greater than and less than zero, in order to satisfy the

boundary conditions on the electric walls. The spectral-

domain immittance approach, however, can be applied to

the auxiliary problems shown in Figs. 2 and 3.

For the pedestal-supported stripline, as shown in Fig.

2(a), the aperture at the y = O plane is replaced by a

perfectly conducting plane (shorted aperture), with the

original tangential electric field at the aperture restored at

y = O+ and y = O- by appropriate magnetic surface cur-

rents &f and – M, respectively. The metallic strip, on the

other hand, is replaced by an electric surface current J.

One can write expressions for the magnetic field above and
below the y = O plane. Following the procedure in [14], the

total transverse magnetic field at the y = O+ plane is the

sum of the field radiated by &f in the presence of the

shorted aperture and the short-circuited field due to J (see

Fig. 2(b)). On the other hand, the field at y =0- is

radiated by – &f in the presence of the conducting plane
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Fig. 2. Equivalent structures for obtaining fields for a pedestal-sup-

ported stripline. (a) Equivalent magnetic current with a shorted aper-
ture. (b) Equivalent structure valid for the field above the y = O plane.
(c) Equivalent structure valid for the field below the y = O plane.
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Fig. 3. Equivalent structure for obtaining fields for pedestd-supported
firdine.

and the environment for the region y <0 (see Fig. 2(c)).

The electric field at the y = t plane can also be found for

the equivalent structure shown in Fig. 2(b). One can use

the conventional spectral-domain immittance approach to

derive the appropriate spectral Green’s functions for these

equivalent structures. The enforcement of continuity of the

transverse magnetic field across the aperture relates the

unknown magnetic surface current ill and the electric

surface current J. For the pede~tal-supported finline, one

can again replace the apertures at y = O and t with con-

ducting planes and magnetic surface currents as shown in

Fig. 3. The continuity of the transverse magnetic field

across the apertures is again enforced. Each of the field

quantities in the equivalent structures can be derived using

the conventional spectral-domai m immittance approach.

The spectral-domain immittance approach is well docu-

mented in the literature [12], [13]; hence, only the final

expressions for the fields are given here. However, we wish

to mention an important point in adapting the approach to

magnetic surface currents. With the coordinates u and u

defined as in -[12], then, in thle case of electric surface

current, the .JU current (u component in the transform

domain) creates only TE-to-y fields and the ~ current (u

component in the transform domain) creates only TM-to-y

fields [12]. -With magnetic surface current, on the other
hand, the MU current creates only the TM fields while the

it?” current creates only the TE fields.

With all the appropriate variables defined in the Ap-

pendix, fields at y = O and t in the transform domain and

boundary conditions applied in the spectral Galerkin

method are given as follows. Quantities with a tilde ( - )
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are Fourier transforms of corresponding quantities without

a tilde. The Fourier transform is defined as in [12] and

[13]. The discrete transform variable is pn-\a and q~/b

for y >0 and y <O, respectively.

A. Stripline

At y = O‘, the transverse magnetic field due to the

magnetic current M at y = O+ in the presence of the

shorted aperture is

-[

- ylh~: - yw; (Y” - Y“)NJVZ ii.
—

(Y’e- Y1’)NW? 1[1_yleN:–ylhN:iiiz
(1)

and the short-circuited field due to the electric current J at

y=tis

[

( - Y’e + Y2’)NXNZ - Y’eN: - Y’hN:——
Y’hN: + Y’eN: ( - Y’h + Y2’)NXNZ

On the other hand, the magnetic current – M at y = O-

yields

[

_ y3hN’ _ y3eN2

I 1
(y3e - y3~)NxNz M.x (3)

.— —

(Ys’-%i
– y3hNz2 – y3eN2 fi -

x z

Enforcing the continuity of the transverse magnetic field

across the aperture at y = O in the spatial domain, we have

[%10+ +[%10+=[:10
(4)

Note that (4) is not valid in the transform domain when

the different quantities are replaced by their Fourier trans-

forms. This is due to the different spectral domains (differ-

ent discrete transform variables) existing for y = O+ and

y = O‘, which are associated with different sidewall separa-

tions.

At y = t, the transverse electric field due to the electric

and magnetic currents is

IIJ5x
E= ,=

1[1(z” - Z’h)ivyz ~
—

Zd”Nz’ + ZdhN’ j
Xz

[

(P’h - P5’)NXNZ P5’N:+ P’hN: $
+ 1[1-p5eN:-P’hN:(P’e-P5h)NXNz M; “

(5)

B. Finline

The transverse magnetic fields at the planes y = t and O,

approaching from either side of each plane, take the fol-

lowing forms:

[:1+=[:%1[21
[

- y6’N: - Y’eN: (Y’e - Y“)NXN= ~lx
. 1[1(Y’e-Y’h)NXH= - Y6hN: - yeeNX’ ~lZ ‘6)

[

– y7hN; – y~eN2

1[1(Y”- Y7h)NXN, f%
.—

(Y7’ - Y7h)NX; - Y’hN: - Y’eN; fil, ‘7)

[:!,-=l::1[21
[Y8hNX2+ Y8’N=2

II

(yWI – Y8=)NXN. f&x

[ilo:ii:ti2:T+y8eN’ ‘i”

(8)

[ 1[ 1

Y’hN: + Y’eN: (Y’h - y’e)w.~z ~’x (9)— ——

(Y’h - Y7’)NXNZ Y’hN: + Y’eN: fi2;

-[

_ ylOhN; _ y@@ (ylO’ - y’Oh)NxNz fil,
——

(YIOe - YIOh)NxNz 1[1_y10hN2–y10e~y2Mz lZ

(lo)

[2.-=[:3[21 (11)

Again, after enforcing the continuity of the transverse

magnetic field across the apertures at y = t and O in the

spatial domain, we obtain

[%I+=[X+[%I*-’12)

[%10++ [:10+=[210
(13)

To apply the spectral Galerkin method [15], we expand

the unknown magnetic and electric surface currents with

sets of known basis functions weighted with unknown

coefficients. These basis functions are analytically Fourier

transformable, and should contain the edge conditions that

J, and M= are singular and JX and MX are zero at the

edges of the strip or apertures. In this paper, we use the
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basis functions provided in [16] and [17]. More comments

on the choice of basis functions will follow shortly. To

determine the unknown weighting coefficients, we com-

plete the Galerkin’s method by carrying out the testing

procedures.

For the stripline, we can test the transverse magnetic

field at they= O plane (eq. (4)) and the electric field at the

y = t plane (eq. (5)) with the basis functions for the

magnetic surface current M and electric surface current J,

respectively. Testing in the spatial domain is given by the

integral J ~<z,z~(x )g(x) dx, where ~(x) is a basis function,

g(x) is a field quantity, L = a for y = t and 0+, and L = b

for y = O‘. Note that the integration limits are different

for the left-hand side and right-hand side of (4), which is

possible because the basis functions for &l are zero for

b/2 < ILl < a/2, i.e., outside the aperture. Applying the

Parseval theorem then allows us to replace each integral by

an inner product defined in the transform domain as the

summation of f-(a) ~( a)/L over a discrete transform vari-

able. (Thus, the inner product of the electric field and an

electric current basis function at y = t is zero as these two

quantities are nonzero in complementary regions.) Simi-

larly, for the finline, (12) and (13) are tested with the basis

functions for the magnetic surface currents, Ml and Mz,

respectively. Then expressing the fields in terms of their

spectral Green’s functions, we obtain the following.

1
+–

a

1
.—

b

1
+–

a

For finline,

c Mx

cMz
(14)

(15

1
—
a
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Here CM and CJ are the weighting coefficients of the basis

functions for the magnetic and electric surface currents,

respectively. It should be noted that the summations over

all spectral terms as well as the basis functions are omitted

in (14)–(17) for simplicity. For sidewall separations of a

and b, the discrete Fourier transform variables in x are a.

and ab, respectively, and they will be defined later when

numerical results are presented. The propagation constant

~ dependence of (14)-(17) is inherent in the spectral

Green’s functions G ‘s. The dispersion characteristics of

these pedestal-supported striplines and finlines are then

given by the eigenvalues of the matrix equations formed by

(14) to (17). The above formulation can readily be ex-

tended to include the effect of substrate holding grooves,

which are realized by reducing the sidewall separation in

the region y > t in Fig. l(a) ancl in (b) from a to b’. For

the finline with substrate holding grooves, the pertinent

eigenvalue equations are still (16) and (17) with a. on the

left-hand side of (16) replaced by a~,. However, for the

stripline with substrate holding grooves, it is more conve-

nient to use equivalent magnetic currents at y = t than the

electric current that has been employed in this paper. The

detailed procedures for analyzing the stripline and finline

with finite metallization thickness and substrate holding

grooves will be reported in [18]. As a final note in this

section, we would like to point out that due to the different

formulation scenarios, (16) and (17) are different from [11,

eqs. (29) and (30)] for an asymmetrical finline.

III. ~RINJLTS

The dispersion characteristics of the dominant modes

for the suspended stripline and finline with pedestals have

been computed using the mixed spectral-domain approach.

The E= components of the dominant modes in the stripline

and finline structures are even and odd, respectively. The

basis functions we use in (14) to (17) are defined as

follows.

For stripline,

J,= ~ C“X,TO,(x, ~/2) (18)
1=1

J== ~ CJZ,{,, (x, ~/2) (19)
,=1

MX = ~ C~X,q<,i (X, c/2) (20)
,=1

M,= ~ CM,l~Oi(x, c/2). (21)
~=1
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For finline,

Mxl = ~ cMT1zqoL(x, w/2)
/=1

M,l = ~ CMZIZ{,, (x, w/2)
,=1

A4X2= ~ cMx21TJoi(x, c\2)
,=1

MZ2 = ~ cMz2,{e, (x, c/2).
,=1

Here

{e, (x,,) =cos[(i -l) T(x/, +l)]//~

foz(x,’T) =cos[(z -o.5)m(x/T+l)]//~

q,, (x, r) =sin[(i –O.5)7r(x/~+1)]/~~

qO1(x, ~)=sin[ir(x/T +l)]/~~

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

where r = w/2, c/2. The Fourier transforms of these basis

functions are functions of zero-order Bessel functions of

the first kind, sampled at a.= 2(n – 0.5) m/u for the

stripline and a. = 2nm/o for the finline, where o = a or b.

However, at the pedestal support y = O, when the aperture

width c is equal to the wall separation b of the pedestal,

the singularity of the field no longer behaves as (lx I–

~)-1/2 but rather as (1x1– ~) - 1+ ~. The singular coefficient

A can be determined from the formula provided in [19]. As

a result, for those basis functions corresponding to the

field at y = O, the square root which appears in (26) and

(27), should be replaced by a (1 – A)th root. The Fourier

transforms of these new basis functions are in terms of

Bessel functions of order (1 – A)/2 [17], which are more

difficult to evaluate than the zero-order ones. Numerical

experiments have shown that there is no significant differ-

ence in the calculated dispersion characteristics regardless

of whether the square root or (1 – A )th root is used when

b = c; hence, the square root is chosen for the basis func-

tions. Finally, for all the numerical results presented in this

section, the number of basis functions is set at r =s = 3

for each unknown component of the electric or magnetic

current.

To demonstrate the versatility of the present approach,

we calculate the normalized propagation constants for a

variety of stripline and finline configurations. First we

compute the dispersion characteristic of the perturbed

microstrip quasi-TEM mode of a microstrip slot line. Fig.

4 shows the dispersion characteristics for different slot

widths. The results show excellent agreement with those of

Itoh [12]. If we reduce the sidewall separation for the

region below the slot to the slot width, we obtain the

pedestal-supported stripline structure proposed in [3].

Fig. 5 shows the variation of the normalized propagation

constant with the strip width of a pedestal-supported

stripline. At 1 GHz, the results compare very well with the

c (mm) 0.05

2.5-

2.0-

+
1.25 x [12]

Y 150

~ 1.5-

0.0 !
o 10 2

FREQUENCY (GHZ)

Fig. 4. Dispersion characteristics of microstrip slot lines; a = 12.7 mm,
d =11.43 mm, t=1.27 mm, h =12.7 mm, w =1.27 mm, c,= 8,875.

o.oo~
o

w ( x 62.5 mm) “

Fig. 5. Variation of the normalized propagation constant with the strip
width of a pedestaf-supported stripline; a = 23.81 mm. d = 5.56 mm,
t = 4.75 mm, h =10.31 mm, c, = 4.2.

experimental values given in [3] for the slot width b =

0.203 X 62.5 mm. Fig. 6 shows the dispersion characteris-

tics of the pedestal-supported striplines with different slot

widths. The results suggest that the quasi-static approxi-

mation employed in [3] may not be sufficient for higher

frequencies. Fig. 7 shows more dispersion characteristics

for the pedestal-supported striplines with alumina ( e, = 8.8)

and GaAs (c, = 12.5) substrates.

An asymmetrical finline with different sidewall separa-

tions on the two sides of the fin has been investigated

recently in [11]. As illustrated in Fig. 8, this structure

actually represents a special case of the pedestal-supported

finline structure discussed in this paper. It should be noted

that there are two apertures in the pedestal-supported

finline and only one aperture in the asymmetrical finline.

The frequency characteristic of the waveguide wavelength

for the asymmetric finline shown in Fig. 8(a) has been

computed in Table I. Excellent agreement (within 2 per-

cent) with the experimental and theoretical results pro-

vided in [11] is obtained. Further, to demonstrate that the

method is applicable to transmission lines with other sup-
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Fig. 6. Dispersion characteristics ofapedestd-supported stripline; a=
23.81 mm, d = 5.56 mm, t = 4.75 mm, h =10.31 mm, w = 9.5 mm,

c, = 4.2.

3.5

~ 2.5

1.5

b ( x 62.5 mm) 0.152

*a+

6 2
FREQ;:NCY (GHZ)

Fig. 7. Dispersion characteristics of a pedestal-supported stripline; a =

23.81 mm, d = 5.56 mm, t= 4.75 mm, h =10.31 mm, w = 9.5 mm.

4.42 mm

4 b

io

(a) (b)

Fig. 8. Comparison between the asymmetrical finfine and the pedestal-
supported finline. (a) Asymmetrical finline studied in [11]. (b)
Pedestal-supported finline.

port structures, the dispersion characteristics for a bilateral
finline with a pedestal and a groove support are obtained

as in Fig. 9. As one can see, the groove does not affect the

dispersion characteristic of the finline, regardless of

whether the separation is the same for the top and bottom

sidewalls. Lastly, in Fig. 10, the dispersion characteristic of

a pedestal-supported unilateral finline is compared with

TABLE I
THEORETICALAND EXPERIMENTALRESULTSFOR

ASYMMETRICALFtNLINE
——
‘req. (GHz

——
17.6

18.0

18.4
18.8
19.2
19.6
20.0 3E

‘“4]Fa=b=b’[13] b. 3.556 mm

\ r+,.2 A a=l.5b’, b=o.5b’

b= b’, a=l.5b

1.0 ~

0.8 ‘a= b’, b=0.5b

0.6

0.4

0.2

0.0
1.(,, I. f=:=!l——

1721

)0 20 80 10
FRpQUENCy(GHZ)

Fig. 9. Dispersion characteristics of bilateraf finlines with different
sldewafl separations at different re~cms; d = 3.4925 mm. t= 0.125
mm, h = 3.6185 mm, w = 0.5 mm, c, = 3.75.

the groove-supported unilateral finline. As the supporting

region increases, the dispersion characteristics of the

pedestal- and groove-supported unilateral finlines ap-

proach each other. Also shown in Fig. 10 are the disper-

sion characteristics of the groove-supported unilateral fin-

lines with different slot widths. These results are within

2 percent of those given in [10] for a finline with a finite

metallization thickness of 5 pm.

IV. CONCLUSIONS

A mixed spectral-domain approach has been presented

for the formulation of eigenvalue problems in the disper-

sion analysis of a suspended stripline and finline with

pedestal support. The important feature of this approach is

that we identify the magnetic surface currents as the

unknowns at the aperture separating two different regions.

This allows us to construct the eigenvalue solutions that

require the mixing of two different spectral domains exist-

ing on opposite sides of the aperture at the pedestal
support. Numerical results for different structures compare

well with those obtained elsewhere with different methods.

The present method is also applicable to the analysis of the

stripline and finline with finite metallization thickness and

substrate holding grooves, which will be reported in the

near future.
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1.5. b’=a IIOGHZ
w= 0.3 mm x [1 o]

s w (mm)
2

b=b 0,5 + b’+

0.5-

0.0
0.0 0.2 0.4 0.6 0.8

e (mm)

Fig. 10. Dispersion characteristics of pedestal-supported and groove-
supported unilateral finlines; b = 0.825 mm, d = 0.77 mm, t = 0.11
mm-, h = 0.88 mm, c, = 3.75.

APPENDIX

The variables that appear in the spectral dyadic Green’s

functions in (1) to (3) and (5) to (11) are given as

YZTM>TE+ Y:’ ‘cothylt
(Al)yle, h = YZTM’TEy;, h + y2TM,TECothY2t

YzTM’TE/sinh y2t

Y2° h = yf,h + y2*M,TECc)thY2t (A2)

y3e, h = y;, h (A3)

1
Z4e, h =

y;>h + y;. h

YzTM’TE/sinhyzt
P5° h = y;. k + y2*M,TEcothyzt

(A4)

(A5)

y6e, h = y;, h (A6)

y7e, h = y;, h (A7)

Y8° h = Y~M’7E/sinhy2t (A8)

and

ylOe, h = y8e, h (A9)

where

yTE = ‘1 i=l,2,3 (A1O)
japo’

yTM = _ ““Eocr’ , i=l,2,3 (All)
Y,

yL=(a2+/32– +CO)l’2, i=l,2,3 (A12)

6,1= Crq=1 C,2 = c, (A13)

Y:h = Y~”’TEcothyl(h – t) (A14)

Y:, h = y2TM,TEcothy2t (A15)

Y:’ h = Y3TM’TEcoth y3d (A16)

‘x=\&& (A17)

and

‘z=&”
(A18)
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